Structure Property and Performance of Polymeric Foams: A Review
PDF

Keywords

Polyurethane foams
cell nucleating
cell morphology
polymer physics
flexible foams

How to Cite

Boumdouha, N., Duchet-Rumeau, J., & Gerard, J.-F. (2024). Structure Property and Performance of Polymeric Foams: A Review. Journal of Basic & Applied Sciences, 20, 1–22. Retrieved from http://890621.mzm5gwd9.asia/index.php/jbas/article/view/2503

Abstract

This work covered essential technological progress in all the aspects of polyurethane foam growth, including cell nucleation and stability. The work also included developing an understanding of controlling cell morphology, size, and shape and improving closed and open-cell content. This necessitated a grasp of the character of surfactant catalysts, which also helps control the development of polyurethane foams. Learn the fundamentals of polymer physics and materials science to understand how the viscosity of polymeric matter impacts the most recent performance attributes of various flexible foams, including high elasticity, flex sheet stock, and viscoelasticity.

PDF

References

Boumdouha N, Safidine Z, Boudiaf A. A new study of dynamic mechanical analysis and the microstructure of polyurethane foams filled. Turk J Chem 2022; 46: 814-34. https://doi.org/10.55730/1300-0527.3371

Boumdouha N, Safidine Z, Boudiaf A, Duchet-Rumeau J, Gerard J-F. Experimental study of the dynamic behaviour of loaded polyurethane foam free fall investigation and evaluation of microstructure. The International Journal of Advanced Manufacturing Technology 2022. https://doi.org/10.1007/s00170-022-08963-1

Bayer O. Polyurethanes. HM Stationery Office; 1946.

Islam MR, Beg MDH, Jamari SS. Development of vegetable‐oil‐based polymers. J Appl Polym Sci 2014; 131. https://doi.org/10.1002/app.40787

Delebecq E, Pascault J-P, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 2013; 113: 80-118. https://doi.org/10.1021/cr300195n

Seymour I. OPEC in the 1990s. Energy Policy 1992; 20: 909-12. https://doi.org/10.1016/0301-4215(92)90177-4

Noureddine B, Zitouni S, Achraf B, Houssém C, Jannick D-R, Jean-François G. Development and Characterization of Tailored Polyurethane Foams for Shock Absorption. Applied Sciences 2022; 12: 2206. https://doi.org/10.3390/app12042206

Chattopadhyay DK, Raju K. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 2007; 32: 352-418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

Rafiee Z, Keshavarz V. Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Prog Org Coat 2015; 86: 190-3. https://doi.org/10.1016/j.porgcoat.2015.05.013

Prisacariu C. Polyurethane elastomers: from morphology to mechanical aspects. Springer Science & Business Media; 2011. https://doi.org/10.1007/978-3-7091-0514-6

Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 2014; 66: 26-32. https://doi.org/10.1016/j.ijbiomac.2014.01.073

Ionescu M. Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing; 2005.

Kochanė T, Budrienė S, Pielichowski K, Pielichowski J. Application of polyurethane-based materials for immobilization of enzymes and cells: a review. Chemija 2006; 17: 74-89.

Capricho JC, Subhani K, Chai BX, Bryant G, Salim N, Juodkazis S, et al. Porous macroradical epoxy-based supercapacitors. Polymer (Guildf) 2022; 259: 125356. https://doi.org/10.1016/j.polymer.2022.125356

Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 2009; 34: 1068-133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

Szycher M. Szycher’s handbook of polyurethanes. CRC press; 1999. https://doi.org/10.1201/9781482273984

Lochner U, Chin H, Yamaguchi Y. U. Lochner, H. Chin and Y. Yamaguchi, Polyurethane foams, Chemical Economics Handbook, Report No. 580.1600 A, IHS Group, Englewood, CO, 2012. Report; 2012.

Bio-based Polyurethane (PU) Market Size Report, 2020 n.d. https://www.grandviewresearch.com/industry-analysis/bio-based-polyurethane-industry (accessed March 29, 2021).

Taheri N, Sayyahi S. Effect of clay loading on the structural and mechanical properties of organoclay/HDI-based thermoplastic polyurethane nanocomposites. E-Polymers 2016; 16: 65-73. https://doi.org/10.1515/epoly-2015-0130

Sridaeng D, Sukkaneewat B, Chueasakol N, Chantarasiri N. Copper-amine complex solution as a low-emission catalyst for flexible polyurethane foam preparation. E-Polymers 2015; 15: 119-26. https://doi.org/10.1515/epoly-2014-0197

Ismail EA, Motawie AM, Sadek EM. Synthesis and characterization of polyurethane coatings based on soybean oil-polyester polyols. Egyptian Journal of Petroleum 2011; 20: 1-8. https://doi.org/10.1016/j.ejpe.2011.06.009

Zia KM, Zuber M, Saif MJ, Jawaid M, Mahmood K, Shahid M, et al. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int J Biol Macromol 2013; 62: 670-6. https://doi.org/10.1016/j.ijbiomac.2013.10.001

Gurunathan T, Mohanty S, Nayak SK. Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv 2015; 5: 11524-33. https://doi.org/10.1039/C4RA14601H

Ionescu M, Radojčić D, Wan X, Shrestha ML, Petrović ZS, Upshaw TA. Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 2016; 84: 736-49. https://doi.org/10.1016/j.eurpolymj.2016.06.006

Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oils: a review. J Braz Chem Soc 1998; 9: 199-210. https://doi.org/10.1590/S0103-50531998000300002

Guo A, Demydov D, Zhang W, Petrovic ZS. Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 2002; 10: 49-52. https://doi.org/10.1023/A:1021022123733

Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical properties of nylon 6-clay hybrid. J Mater Res 1993; 8: 1185-9. https://doi.org/10.1557/JMR.1993.1185

Bergaya F, Detellier C, Lambert J-F, Lagaly G. Introduction to clay-polymer nanocomposites (CPN). Dev Clay Sci, vol. 5, Elsevier; 2013, p. 655-77. https://doi.org/10.1016/B978-0-08-098258-8.00020-1

Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney P V, Bowden AA, et al. A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 2008; 37: 568-94. https://doi.org/10.1039/B702653F

Blythe A, Fox B, Nikzad M, Eisenbart B, Chai BX, Blanchard P, et al. Evaluation of the Failure Mechanism in Polyamide Nanofibre Veil Toughened Hybrid Carbon/Glass Fibre Composites. Materials 2022; 15: 8877. https://doi.org/10.3390/ma15248877

Boumdouha N. Project Polytechnique Reporting. Lyon, French: 2022. https://doi.org/10.13140/RG.2.2.20872.08964

Baghdadi YN, Sinno J, Bouhadir K, Harb M, Mustapha S, Patra D, et al. The mechanical and thermal properties of graphitic carbon nitride (g-C3N4)-based epoxy composites. J Appl Polym Sci 2021; 138: 51324. https://doi.org/10.1002/app.51324

Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, et al. Mercerization Optimization of Bamboo (Bambusa vulgaris) Fiber-Reinforced Epoxy Composite Structures Using a Box-Behnken Design. Polymers 2020, Vol 12, Page 1367 2020; 12: 1367. https://doi.org/10.3390/polym12061367

Valipour F, Dehghan SF, Hajizadeh R. The effect of nano- and microfillers on thermal properties of Polyurethane foam. International Journal of Environmental Science and Technology 2022; 19: 541-52. https://doi.org/10.1007/s13762-021-03150-3

Ding F, Liu LY, Liu TL, Li YQ, Li JP, Sun ZY. Predicting the Mechanical Properties of Polyurethane Elastomers Using Machine Learning. Chinese Journal of Polymer Science (English Edition) 2023; 41: 422-31. https://doi.org/10.1007/s10118-022-2838-6

Boumdouha N, Safidine Z, Boudiaf A. Preparation of Nonlethal Projectiles by Polyurethane Foam with the Dynamic and Microscopic Characterization for Risk Assessment and Management. ACS Omega 2022. https://doi.org/10.1021/acsomega.2c01736

Klempner D, Frisch KC. Handbook of polymeric foams and foam technology. vol. 404. Hanser New York; 1991.

Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000; 21: 2405-12. https://doi.org/10.1016/S0142-9612(00)00108-3

Xanthos M, Dey SK, Lee ST. Foam Extrusion Principles and Practice. Technomic Publishing Company, Inc, Lancaster, PA 2000: 307-38.

Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications - a review. RSC Adv 2016; 6: 114453-82. https://doi.org/10.1039/C6RA14525F

Ulrich H. Chemistry and technology of isocyanates. Wiley-Blackwell; 1996.

Soto M, Sebastián RM, Marquet J. Photochemical activation of extremely weak nucleophiles: Highly fluorinated urethanes and polyurethanes from polyfluoro alcohols. J Org Chem 2014; 79: 5019-27. https://doi.org/10.1021/jo5005789

Pauzi NNPN, Majid RA, Dzulkifli MH, Yahya MY. Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos B Eng 2014; 67: 521-6. https://doi.org/10.1016/j.compositesb.2014.08.004

Fox RB, Edmund B. Mechanically Frothed Gel Elastomers and Methods of Making and Using Them 2016.

Rajendran GP, Mahadevan V, Srinivasan M. Synthesis of some low glass transition temperature polytetrahydrofuran polymers. Eur Polym J 1989; 25: 461-3. https://doi.org/10.1016/0014-3057(89)90186-9

Petrovic Z. Polyurethanes from vegetable oils. Polym Rev 2008; 48: 109-155. https://doi.org/10.1080/15583720701834224

Sonnenschein MF. Polyurethanes: science, technology, markets, and trends. John Wiley & Sons; 2021. https://doi.org/10.1002/9781119669401

Anisur MR, Kibria MA, Mahfuz MH, Saidur R, Metselaar I. Latent heat thermal storage (LHTS) for energy sustainability. Energy Sustainability Through Green Energy, Springer; 2015, p. 245-63. https://doi.org/10.1007/978-81-322-2337-5_10

Heinen M, Gerbase AE, Petzhold CL. Vegetable oil-based rigid polyurethanes and phosphorylated flame-retardants derived from epoxydized soybean oil. Polym Degrad Stab 2014; 108: 76-86. https://doi.org/10.1016/j.polymdegradstab.2014.05.024

Arniza MZ, Hoong SS, Idris Z, Yeong SK, Hassan HA, Din AK, et al. Synthesis of transesterified palm olein‐based polyol and rigid polyurethanes from this polyol. J Am Oil Chem Soc 2015; 92: 243-55. https://doi.org/10.1007/s11746-015-2592-9

Cinelli P, Anguillesi I, Lazzeri A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 2013; 49: 1174-84. https://doi.org/10.1016/j.eurpolymj.2013.04.005

Singhal P, Small W, Cosgriff-Hernandez E, Maitland DJ, Wilson TS. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomater 2014; 10: 67-76. https://doi.org/10.1016/j.actbio.2013.09.027

Hodlur RM, Rabinal MK. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 2014; 90: 160-5. https://doi.org/10.1016/j.compscitech.2013.11.005

Chen T, Qiu J, Zhu K, Li J. Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers. Mater Des 2016; 90: 1069-76. https://doi.org/10.1016/j.matdes.2015.11.068

Yan R, Wang R, Lou C-W, Huang S-Y, Lin J-H. Quasi-static and dynamic mechanical responses of hybrid laminated composites based on high-density flexible polyurethane foam. Compos B Eng 2015; 83: 253-63. https://doi.org/10.1016/j.compositesb.2015.08.037

Cardoso GT, Neto SC, Vecchia F. Rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems. Frontiers of Architectural Research 2012; 1: 348-56. https://doi.org/10.1016/j.foar.2012.09.005

Fang C, Zhou X, Yu Q, Liu S, Guo D, Yu R, et al. Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Prog Org Coat 2014; 77: 61-71. https://doi.org/10.1016/j.porgcoat.2013.08.004

Claeys B, Vervaeck A, Hillewaere XKD, Possemiers S, Hansen L, De Beer T, et al. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. European Journal of Pharmaceutics and Biopharmaceutics 2015; 90: 44-52. https://doi.org/10.1016/j.ejpb.2014.11.003

Randall D, Lee S. The polyurethanes book. Wiley-Blackwell; 2002.

Savelyev Y, Veselov V, Markovskaya L, Savelyeva O, Akhranovich E, Galatenko N, et al. Preparation and characterization of new biologically active polyurethane foams. Materials Science and Engineering: C 2014; 45: 127-35. https://doi.org/10.1016/j.msec.2014.08.068

Patel RH, Shah MD, Patel HB. Synthesis and characterization of structurally modified polyurethanes based on castor oil and phosphorus-containing polyol for flame-retardant coatings. International Journal of Polymer Analysis and Characterization 2011; 16: 107-17. https://doi.org/10.1080/1023666X.2011.541108

Blackwell J, Nagarajan MR, Hoitink TB. The structure of the hard segments in MDI/diol/PTMA polyurethane elastomers, ACS Publications; 1981. https://doi.org/10.1021/bk-1981-0172.ch014

Sheikhy H, Shahidzadeh M, Ramezanzadeh B, Noroozi F. Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. Journal of Industrial and Engineering Chemistry 2013; 19: 1949-55. https://doi.org/10.1016/j.jiec.2013.03.008

Zhang M, Luo Z, Zhang J, Chen S, Zhou Y. Effects of a novel phosphorus-nitrogen flame retardant on rosin-based rigid polyurethane foams. Polym Degrad Stab 2015; 120: 427-34. https://doi.org/10.1016/j.polymdegradstab.2015.08.001

Gunter O. Polyurethane Handbook [MI. New York: Hanser Publi—Fishers 1985.

Domanska A, Boczkowska A. Biodegradable polyurethanes from crystalline prepolymers. Polym Degrad Stab 2014; 108: 175-81. https://doi.org/10.1016/j.polymdegradstab.2014.06.017

Vermette P, Griesser HJ, Laroche G, Guidoin R. Biomedical applications of polyurethanes. Landes Bioscience Georgetown, TX; 2001.

Rajput SD, Mahulikar PP, Gite V V. Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings. Prog Org Coat 2014; 77: 38-46. https://doi.org/10.1016/j.porgcoat.2013.07.020

Chaudhari A, Kuwar A, Mahulikar P, Hundiwale D, Kulkarni R, Gite V. Development of anticorrosive two pack polyurethane coatings based on modified fatty amide of Azadirachta indica Juss oil cured at room temperature-a sustainable resource. RSC Adv 2014; 4: 17866-72. https://doi.org/10.1039/C4RA01880J

Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 2012; 87: 2068-75. https://doi.org/10.1016/j.carbpol.2011.10.027

Mülazim Y, Çakmakçı E, Kahraman MV. Preparation of photo curable highly hydrophobic coatings using a modified castor oil derivative as a sol-gel component. Prog Org Coat 2011; 72: 394-401. https://doi.org/10.1016/j.porgcoat.2011.05.012

Levchik S V, Weil ED. Thermal decomposition, combustion and fire‐retardancy of polyurethanes—a review of the recent literature. Polym Int 2004; 53: 1585-610. https://doi.org/10.1002/pi.1314

Veronese VB, Menger RK, Forte MM de C, Petzhold CL. Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 2011; 120: 530-7. https://doi.org/10.1002/app.33185

Shi Y, Yu B, Zhou K, Yuen RKK, Gui Z, Hu Y, et al. Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. J Hazard Mater 2015; 293: 87-96. https://doi.org/10.1016/j.jhazmat.2015.03.041

Sardon H, Irusta L, Fernández-Berridi MJ. Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: Comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 2009; 66: 291-5. https://doi.org/10.1016/j.porgcoat.2009.08.005

Lee A, Deng Y. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur Polym J 2015; 63: 67-73. https://doi.org/10.1016/j.eurpolymj.2014.11.023

Rokicki G, Piotrowska A. A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer (Guildf) 2002; 43: 2927-35. https://doi.org/10.1016/S0032-3861(02)00071-X

Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 2009; 48: 2583-9. https://doi.org/10.1021/ie801251r

Yamasaki S, Nishiguchi D, Kojio K, Furukawa M. Effects of polymerization method on structure and properties of thermoplastic polyurethanes. J Polym Sci B Polym Phys 2007; 45: 800-14. https://doi.org/10.1002/polb.21080

Blackwell J, Gardner KH. Structure of the hard segments in polyurethane elastomers. Polymer (Guildf) 1979; 20: 13-7. https://doi.org/10.1016/0032-3861(79)90035-1

Musselman SG, Santosusso TM, Sperling LH. Structure versus performance properties of cast elastomers. Polyurethanes’ 98 Conference Proceedings, 1998.

Zheng J, Luo J, Zhou D, Shen T, Li H, Liang L, et al. Preparation and properties of nonionic polyurethane surfactants. Colloids Surf A Physicochem Eng Asp 2010; 363: 16-21. https://doi.org/10.1016/j.colsurfa.2010.04.001

Motamedi M, Tehrani-Bagha AR, Mahdavian M. The effect of cationic surfactants in acid cleaning solutions on protective performance and adhesion strength of the subsequent polyurethane coating. Prog Org Coat 2014; 77: 712-8. https://doi.org/10.1016/j.porgcoat.2013.12.009

Jin L, Liu Z, Xu Q, Li Y. Preparation of soap‐free cationic emulsion using polymerizable surfactant. J Appl Polym Sci 2006; 99: 1111-6. https://doi.org/10.1002/app.22168

Lu Y, Xia Y, Larock RC. Surfactant-free core-shell hybrid latexes from soybean oil-based waterborne polyurethanes and poly (styrene-butyl acrylate). Prog Org Coat 2011; 71: 336-42. https://doi.org/10.1016/j.porgcoat.2011.03.027

Liu N, Zhao Y, Kang M, Wang J, Wang X, Feng Y, et al. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog Org Coat 2015; 82: 46-56. https://doi.org/10.1016/j.porgcoat.2015.01.015

Murakami H, Baba R, Fukushima M, Nonaka N. Synthesis and characterization of polyurethanes cross-linked by polyrotaxanes consisting of half-methylated cyclodextrins and PEGs with different chain lengths. Polymer (Guildf) 2015; 56: 368-74. https://doi.org/10.1016/j.polymer.2014.11.057

Da Silva VR, Mosiewicki MA, Yoshida MI, Da Silva MC, Stefani PM, Marcovich NE. Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym Test 2013; 32: 438-45. https://doi.org/10.1016/j.polymertesting.2013.01.002

Fu C, Liu J, Xia H, Shen L. Effect of structure on the properties of polyurethanes based on aromatic cardanol-based polyols prepared by thiol-ene coupling. Prog Org Coat 2015; 83: 19-25. https://doi.org/10.1016/j.porgcoat.2015.01.020

Fu C, Zheng Z, Yang Z, Chen Y, Shen L. A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material. Prog Org Coat 2014; 77: 53-60. https://doi.org/10.1016/j.porgcoat.2013.08.002

Camara F, Benyahya S, Besse V, Boutevin G, Auvergne R, Boutevin B, et al. Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes. Eur Polym J 2014; 55: 17-26. https://doi.org/10.1016/j.eurpolymj.2014.03.011

Moawed EA, Abulkibash AB, El-Shahat MF. Synthesis of tannic acid azo polyurethane sorbent and its application for extraction and determination of atrazine and prometryn pesticides in foods and water samples. Environ Nanotechnol Monit Manag 2015; 3: 61-6. https://doi.org/10.1016/j.enmm.2015.02.001

Lorenzetti A, Modesti M, Gallo E, Schartel B, Besco S, Roso M. Synthesis of phosphinated polyurethane foams with improved fire behaviour. Polym Degrad Stab 2012; 97: 2364-9. https://doi.org/10.1016/j.polymdegradstab.2012.07.026

Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Materials Science and Engineering: C 2014; 44: 24-37. https://doi.org/10.1016/j.msec.2014.07.061

Xinrong S, Nanfang W, Kunyang S, Sha D, Zhen C. Synthesis and characterization of waterborne polyurethane containing UV absorption group for finishing of cotton fabrics. Journal of Industrial and Engineering Chemistry 2014; 20: 3228-33. https://doi.org/10.1016/j.jiec.2013.12.003

Zhang J, Tu W, Dai Z. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Prog Org Coat 2012; 75: 579-83. https://doi.org/10.1016/j.porgcoat.2012.05.005

Yu L, Zhou L, Ding M, Li J, Tan H, Fu Q, et al. Synthesis and characterization of novel biodegradable folate conjugated polyurethanes. J Colloid Interface Sci 2011; 358: 376-83. https://doi.org/10.1016/j.jcis.2011.03.007

Moawed EA, Abulkibash AB, El-Shahat MF. Synthesis and characterization of iodo polyurethane foam and its application in removing of aniline blue and crystal violet from laundry wastewater. Journal of Taibah University for Science 2015; 9: 80-8. https://doi.org/10.1016/j.jtusci.2014.07.003

Lijie H, Yongtao D, Zhiliang Z, Zhongsheng S, Zhihua S. Synergistic effect of anionic and nonionic monomers on the synthesis of high solid content waterborne polyurethane. Colloids Surf A Physicochem Eng Asp 2015; 467: 46-56. https://doi.org/10.1016/j.colsurfa.2014.11.014

Lin Y, Zhou Y, Xu C, Xie A, Yang M, Yang S, et al. Study on synthesis and thickening property of hyperbranched waterborne polyurethane. Prog Org Coat 2013; 76: 1302-7. https://doi.org/10.1016/j.porgcoat.2013.04.001

Leitsch EK, Heath WH, Torkelson JM. Polyurethane/ polyhydroxyurethane hybrid polymers and their applications as adhesive bonding agents. Int J Adhes Adhes 2016; 64: 1-8. https://doi.org/10.1016/j.ijadhadh.2015.09.001

Rajput SD, Hundiwale DG, Mahulikar PP, Gite V V. Fatty acids based transparent polyurethane films and coatings. Prog Org Coat 2014; 77: 1360-8. https://doi.org/10.1016/j.porgcoat.2014.04.030

Tsou C-H, Lee H-T, Tsai H-A, Cheng H-J, Suen M-C. Synthesis and properties of biodegradable polycaprolactone/ polyurethanes by using 2, 6-pyridinedimethanol as a chain extender. Polym Degrad Stab 2013; 98: 643-50. https://doi.org/10.1016/j.polymdegradstab.2012.11.010

Qu W-Q, Xia Y-R, Jiang L-J, Zhang L-W, Hou Z-S. Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties. Chinese Chemical Letters 2016; 27: 135-8. https://doi.org/10.1016/j.cclet.2015.07.018

Solanki A, Mehta J, Thakore S. Structure-property relationships and biocompatibility of carbohydrate cross-linked polyurethanes. Carbohydr Polym 2014; 110: 338-44. https://doi.org/10.1016/j.carbpol.2014.04.021

Lingier S, Espeel P, Suarez SS, Türünç O, De Wildeman S, Du Prez FE. Renewable thermoplastic polyurethanes containing rigid spiroacetal moieties. Eur Polym J 2015; 70: 232-9. https://doi.org/10.1016/j.eurpolymj.2015.07.017

Santamaria-Echart A, Arbelaiz A, Saralegi A, Fernández-d’Arlas B, Eceiza A, Corcuera MA. Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloids Surf A Physicochem Eng Asp 2015; 482: 554-61. https://doi.org/10.1016/j.colsurfa.2015.07.012

Patel RH, Patel KS. Synthesis and characterization of flame retardant hyperbranched polyurethanes for nanocomposite and nanocoating applications. Prog Org Coat 2015; 88: 283-92. https://doi.org/10.1016/j.porgcoat.2015.07.007

Wang X, Hu J, Li Y, Zhang J, Ding Y. The surface properties and corrosion resistance of fluorinated polyurethane coatings. J Fluor Chem 2015; 176: 14-9. https://doi.org/10.1016/j.jfluchem.2015.04.002

Oprea S, Gradinariu P, Joga A, Oprea V. Synthesis, structure and fungal resistance of sulfadiazine-based polyurethane ureas. Polym Degrad Stab 2013; 98: 1481-8. https://doi.org/10.1016/j.polymdegradstab.2013.04.017

Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 2015; 122: 202-11. https://doi.org/10.1016/j.carbpol.2014.12.081

Zhang M, Zhang J, Chen S, Zhou Y. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym Degrad Stab 2014; 110: 27-34. https://doi.org/10.1016/j.polymdegradstab.2014.08.009

Bailosky LC, Bender LM, Bode D, Choudhery RA, Craun GP, Gardner KJ, et al. Synthesis of polyether polyols with epoxidized soy bean oil. Prog Org Coat 2013; 76: 1712-9. https://doi.org/10.1016/j.porgcoat.2013.05.005

Gaikwad MS, Gite V V, Mahulikar PP, Hundiwale DG, Yemul OS. Eco-friendly polyurethane coatings from cottonseed and karanja oil. Prog Org Coat 2015; 86: 164-72. https://doi.org/10.1016/j.porgcoat.2015.05.014

Zhang S, Chen Z, Guo M, Bai H, Liu X. Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica. Colloids Surf A Physicochem Eng Asp 2015; 468: 1-9. https://doi.org/10.1016/j.colsurfa.2014.12.004

Zhang S, Yu A, Song X, Liu X. Synthesis and characteri-zation of waterborne UV-curable polyurethane nanocom-posites based on the macromonomer surface modification of colloidal silica. Prog Org Coat 2013; 76: 1032-9. https://doi.org/10.1016/j.porgcoat.2013.02.019

Fan W, Du W, Li Z, Dan N, Huang J. Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Prog Org Coat 2015; 86: 125-33. https://doi.org/10.1016/j.porgcoat.2015.04.022

Aung MM, Yaakob Z, Kamarudin S, Abdullah LC. Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind Crops Prod 2014; 60: 177-85. https://doi.org/10.1016/j.indcrop.2014.05.038

Li J, Zhang X, Liu Z, Li W, Dai J. Studies on waterborne polyurethanes based on new medium length fluorinated diols. J Fluor Chem 2015; 175: 12-7. https://doi.org/10.1016/j.jfluchem.2015.02.015

Serrano A, Borreguero AM, Garrido I, Rodríguez JF, Carmona M. Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl Therm Eng 2016; 103: 226-32. https://doi.org/10.1016/j.applthermaleng.2016.04.098

Njuguna J, Michałowski S, Pielichowski K, Kayvantash K, Walton AC. Fabrication, characterization and low‐velocity impact testing of hybrid sandwich composites with polyurethane/layered silicate foam cores. Polym Compos 2011; 32: 6-13. https://doi.org/10.1002/pc.20995

Deng R, Davies P, Bajaj AK. Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications. J Sound Vib 2003; 262: 391-417. https://doi.org/10.1016/S0022-460X(03)00104-4

Boumdouha N, Louar MA. Influence of Microstructure on the Dynamic Behaviour of Polyurethane Foam with Various Densities. Journal of Basic & Applied Sciences 2023; 19: 131-50. https://doi.org/10.29169/1927-5129.2023.19.12

Zain NM, Roslin EN, Ahmad S. Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications. Int J Adhes Adhes 2016; 71: 1-9. https://doi.org/10.1016/j.ijadhadh.2016.08.001

Verma G, Kaushik A, Ghosh AK. Nano-interfaces between clay platelets and polyurethane hard segments in spray coated automotive nanocomposites. Prog Org Coat 2016; 99: 282-94. https://doi.org/10.1016/j.porgcoat.2016.06.001

Xiao P, Dudal Y, Corvini PF-X, Pieles U, Shahgaldian P. Cyclodextrin-based polyurethanes act as selective molecular recognition materials of active pharmaceutical ingredients (APIs). Polym Chem 2011; 2: 1264-6. https://doi.org/10.1039/c1py00114k

Chin YP, Mohamad S, Abas MR Bin. Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer. Int J Mol Sci 2010; 11: 3459-71. https://doi.org/10.3390/ijms11092459

Biswas A, Appell M, Liu Z, Cheng HN. Microwave-assisted synthesis of cyclodextrin polyurethanes. Carbohydr Polym 2015; 133: 74-9. https://doi.org/10.1016/j.carbpol.2015.06.044

Boumdouha N, Duchet-Rumeau J, Gerard J-F, Eddine Tria D, Oukara A. Research on the Dynamic Response Properties of Nonlethal Projectiles for Injury Risk Assessment. ACS Omega 2022. https://doi.org/10.1021/acsomega.2c06265

Dutta S, Karak N. Synthesis, characterization of poly (urethane amide) resins from Nahar seed oil for surface coating applications. Prog Org Coat 2005; 53: 147-52. https://doi.org/10.1016/j.porgcoat.2005.02.003

Dutta S, Karak N, Jana T. Evaluation of Mesua ferrea L. seed oil modified polyurethane paints. Prog Org Coat 2009; 65: 131-5. https://doi.org/10.1016/j.porgcoat.2008.10.008

Van Benthem RATM. Novel hyperbranched resins for coating applications. Prog Org Coat 2000; 40: 203-14. https://doi.org/10.1016/S0300-9440(00)00122-3

Chen L, Wang Y. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 2010; 21: 1-26. https://doi.org/10.1002/pat.1550

Thakur S, Karak N. Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coat 2013; 76: 157-64. https://doi.org/10.1016/j.porgcoat.2012.09.001

Yi J, Huang C, Zhuang H, Gong H, Zhang C, Ren R, et al. Degradable polyurethane based on star-shaped polyester polyols (trimethylolpropane and ɛ-caprolactone) for marine antifouling. Prog Org Coat 2015; 87: 161-70. https://doi.org/10.1016/j.porgcoat.2015.05.029

Zhou B, Hu Y, Li J, Li B. Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. Int J Biol Macromol 2014; 64: 402-8. https://doi.org/10.1016/j.ijbiomac.2013.12.016

Wang Y, Hong Q, Chen Y, Lian X, Xiong Y. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2012; 100: 77-83. https://doi.org/10.1016/j.colsurfb.2012.05.030

Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000; 21: 2335-46. https://doi.org/10.1016/S0142-9612(00)00101-0

Polyol Market Size Worth USD 45.17 Billion By 2025 | CAGR: 8.5% n.d. https://www.grandviewresearch.com/press-release/global-polyols-market (accessed April 4, 2021).

US DOE Novel Chemistry for Greener Polyurethane - Bioplastics News n.d. https://bioplasticsnews.com/2020/ 09/27/us-doe-novel-chemistry-greener-polyurethane/ (accessed April 4, 2021).

Takahara A, Hergenrother RW, Coury AJ, Cooper SL. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipod sorption. J Biomed Mater Res 1992; 26: 801-18. https://doi.org/10.1002/jbm.820260609

Li Y-J, Nakamura N, Wang Y-F, Kodama M, Nakaya T. Synthesis and hemocompatibilities of new segmented polyurethanes and poly (urethane urea) s with poly (butadiene) and phosphatidylcholine analogues in the main chains and long-chain alkyl groups in the side chains. Chemistry of Materials 1997; 9: 1570-7. https://doi.org/10.1021/cm960615o

Jaudouin O, Robin J, Lopez‐Cuesta J, Perrin D, Imbert C. Ionomer‐based polyurethanes: a comparative study of properties and applications. Polym Int 2012; 61: 495-510. https://doi.org/10.1002/pi.4156

Solanki A, Thakore S. Cellulose cross-linked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers. Int J Biol Macromol 2015; 80: 683-91. https://doi.org/10.1016/j.ijbiomac.2015.07.003

Lalwani R, Desai S. Sorption behavior of biodegradable polyurethanes with carbohydrate cross-linkers. J Appl Polym Sci 2010; 115: 1296-305. https://doi.org/10.1002/app.30214

Lee SJ, Kim BK. Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability. Carbohydr Polym 2012; 87: 1803-9. https://doi.org/10.1016/j.carbpol.2011.09.098

Kara F, Aksoy EA, Yuksekdag Z, Hasirci N, Aksoy S. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr Polym 2014; 112: 39-47. https://doi.org/10.1016/j.carbpol.2014.05.019

Vickers NJ. Animal communication: when i’m calling you, will you answer too? Current Biology 2017; 27: R713-5. https://doi.org/10.1016/j.cub.2017.05.064

Yu Y, Zhang Y. Review of study on resin dye-fixatives on cotton fabrics. Mod Appl Sci 2009; 3: 9-16. https://doi.org/10.5539/mas.v3n10p9

Wang H, Gen C. Synthesis of anionic waterborne polyurethane with the covalent bond of a reactive dye. J Appl Polym Sci 2002; 84: 797-805. https://doi.org/10.1002/app.10336

Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M. Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int J Biol Macromol 2016; 93: 145-55. https://doi.org/10.1016/j.ijbiomac.2016.08.068

Shaaban A, Se S-M, Ibrahim IM, Ahsan Q. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Materials 2015; 30: 167-75. https://doi.org/10.1016/S1872-5805(15)60182-2

Fornasieri M, Alves JW, Muniz EC, Ruvolo-Filho A, Otaguro H, Rubira AF, et al. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Compos Part A Appl Sci Manuf 2011; 42: 189-95. https://doi.org/10.1016/j.compositesa.2010.11.004

Patel MR, Patel J V, Sinha VK. Polymeric precursors from PET waste and their application in polyurethane coatings. Polym Degrad Stab 2005; 90: 111-5. https://doi.org/10.1016/j.polymdegradstab.2005.02.017

Mohebby B, Gorbani-Kokandeh M, Soltani M. Springback in acetylated wood based composites. Constr Build Mater 2009; 23: 3103-6. https://doi.org/10.1016/j.conbuildmat.2009.02.007

Kong X, Zhao L, Curtis JM. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals. Carbohydr Polym 2016; 152: 487-95. https://doi.org/10.1016/j.carbpol.2016.07.032

Srivastava V, Srivastava R. On the polymeric foams: Modeling and properties. J Mater Sci 2014; 49: 2681-92. https://doi.org/10.1007/s10853-013-7974-5

Boumdouha N, Safidine Z, Boudiaf A. Experimental Study of Loaded Foams During Free Fall Investigation and Evaluation of Microstructure. The International Journal of Advanced Manufacturing Technology 2021. https://doi.org/10.21203/rs.3.rs-792400/v1

De Souza FM, Desai Y, Gupta RK. Introduction to Polymeric Foams 2023. https://doi.org/10.1021/bk-2023-1439.ch001

Jin FL, Zhao M, Park M, Park SJ. Recent trends of foaming in polymer processing: A review. Polymers (Basel) 2019; 11: 953. https://doi.org/10.3390/polym11060953

Zhang Y, Yang F, Yu C, Niu Z, Lu P, Zhang Y, et al. Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites. J Electron Mater 2022; 51: 420-5. https://doi.org/10.1007/s11664-021-09311-x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.